morph::vec (fixed-size mathematical vector)

#include <morph/vec.h>

Header file: morph/vec.h. Test and example code: tests/testvec, tests/testvecElementOps.

Table of contents

Summary

morph::vec is a fixed-size mathematical vector class. It derives from std::array and can be used in much the same way as its STL parent. It has iterators and you can apply STL algorithms. It is constexpr-capable, meaning that it can be incorporated into constexpr functions to do compile-time maths.

namespace morph {
    template <typename S=float, size_t N=3>
    struct vec : public std::array<S, N>
    {

Template arguments are S, the element type and N, the size of the array.

Create objects just like std::array:

morph::vec<int, 4> v1 = { 1, 2, 3, 4 };

but with morph::vec, you can do maths:

morph::vec<int, 4> v2 = { 1, 2, 3, 4 };
morph::vec<int, 4> v3 = v1 + v2;             // element-wise addition
morph::vec<float, 3> u1 = { 1.0f, 0.0f, 0.0f };
morph::vec<float, 3> u2 = { 0.0f, 1.0f, 0.0f };
morph::vec<float, 3> u3 = u1.cross (u2);     // vector cross-product
float dp = u1.dot (u3);                      // (scalar/dot/inner)-product

Design

This was the first class where I decided to derive from an STL container. I was motivated by a need for a fixed size mathematical vector to use in the computation of three dimensional models for the visualization code. I wanted the data stored in a fixed size std::array, but I wanted to add mathematical operations with an interface that would make coding with the class convenient, easy and enjoyable.

While I could have created a class with an std::array data member, I thought simply adding functions to an extended std::array would work very well. It is indeed, extremely convenient to use.

However, you may see this approach discouraged. As explained by Roger Pate the risk is deallocating through a pointer to the base class, with the issue being that STL containers don’t have virtual deconstructors. I avoid this issue by adding no additional member data attributes to morph::vec, only methods.

std::array is an ‘aggregate class’ with no user-provided constructors, and morph::vec does not add any of its own constructors. It is generally initialized with brace-initializer lists.

vec<float, 3> v = { 1.0f, 1.0f, 1.0f };

The template arguments are S and N which are type and size. These are passed through to std::array. The argument name S hints ‘scalar’ as the elements of a mathematical vector of N dimensions are scalar, real numbers.

Arithmetic operators

You can use arithmetic operators on vec objects with their operations being applied element-wise. operations with other vec objects and with scalars are all supported and should work as expected.

Operator Scalar example Element-Wise vec example
+ v2 = v1 + 2.0f; or v2 = 2.0f + v1; v3 = v1 + v2;
+= v2 += 2.0f; v2 += v1;
- v2 = v1 - 5.0f; or v2 = 5.0f - v1; v3 = v1 - v2;
-= v2 -= 2.0f; v2 -= v1;
* v2 = v1 * 10.0; or v2 = 10.0 * v1; v3 = v1 * v2;
*= v2 *= 10; v2 *= v1;
/ v2 = v1 / 10.0; or v2 = 10.0 / v1; v3 = v1 / v2;
/= v2 /= 10; v2 /= v1;
- (unary negate)   v2 = -v1;

Assignment operators

The assignment operator = will work correctly to assign one vec to another. For example,

morph::vec<float, 3> v1 = { 1, 2, 3 };
morph::vec<float, 3> v2 = v1;           // Good, works fine

Because std::array is the base class of vec it is also possible to assign a vec to an std::array:

morph::vec<float, 3> v1 = { 1, 2, 3 };
std::array<float, 3> a1 = v1;           // Good, works fine

However, there are no templated assignment operators in morph::vec that make it possible to assign from other types (I did try). For example, this will not compile:

std::array<float, 3> a1 = { 1, 2, 3 };
morph::vec<float, 3> v1 = a1;           // Bad, doesn't compile

In this case, you have to use vec::set_from:

std::array<float, 3> a1 = { 1, 2, 3 };
morph::vec<float, 3> v1;
v1.set_from (a1);

Comparison operators

The default comparison in std::array is a lexicographic comparison. This means that if the first element in a first array is less than the first element in a second array, then the first array is less than the second array regardless of the values in the remaining elements. This is not useful when the array is interpreted as a mathematical vector. In this case, an appropriate comparison is probably vector magnitude comparison (i.e comparing their lengths). Another useful comparison is element-wise comparison where one vector may be considered to be less than another if each of its elements is less than the corresponding element in the other. That is to say v1 < v2 if v1[i] < v2[i] for all i. Both vector magnitude and element-wise comparison can be applied to a morph::vec and a scalar.

In morph::vec I’ve implemented the following comparisons. Note that the default is not lexicographic comparison and that some comparisons could still be implemented.

Comparison (vec v1 with vec v2) Lexicographic Vector magnitude Element-Wise
v1 < v2 v1.lexical_lessthan (v2) v1.length_lessthan (v2) v1 < v2
v1 <= v2 not implemented v1.length_lte (v2) v1 <= v2
v1 > v2 not implemented v1.length_gtrthan (v2) v1 > v2
v1 >= v2 not implemented v1.length_gte (v2) v1 >= v2
Comparison (vec v with scalar s) Lexicographic Vector magnitude Element-Wise
v < s not implemented not implemented v < s
v <= s not implemented not implemented v <= s
v > s not implemented not implemented v > s
v >= s not implemented not implemented v >= s
‘not’ comparison Implementation
unary not operator ! operator! implements length comparison. !v1 is true if v1.length() == 0
not operator != unimplemented

Using morph::vec as a key in std::map or within an std::set

Although morph::vec derives from std::array, you can’t use morph::vec as a key in an std::map!

Danger! The following examples will compile but will have unexpected runtime results:

// Bad!! Because the key is morph::vec<int, 2>
std::map<morph::vec<int, 2>, myclass> some_map;

// Also Bad! Again, the key is morph::vec<int, 2>
std::set<morph::vec<int, 2>> some_set;

The reason for this is that std::set and std::map depend upon the less-than comparison for their functionality and the default less-than comparison in morph::vec is element-wise which will fail to sort an array. In std::array, less-than is lexicographic which guarantees a successful sort.

If you really need to use morph::vec as a key, there is a workaround. You have to specify that you want to use the morph::vec lexicographical less-than function lexical_lessthan in your map or set like this:

// To make the map work, we have to create a comparison function that uses lexical_lessthan...
auto _cmp = [](morph::vec<int,2> a, morph::vec<int,2> b){return a.lexical_lessthan(b);};
// ...then pass this function when declaring the `map` (or `set`):
std::map<morph::vec<int, 2>, std::string, decltype(_cmp)> themap(_cmp);

This example comes from tests/testvec_asmapkey.

Casting of std::array to morph::vec

If you have data in a part of your program contained in an std::array, it’s possible to cast it to morph::vec either to use it within a morphologica visualization or simply to do some maths on the data.

The following casts from array to vec are possible.

Cast array to a const pointer

Use static_cast or reinterpret_cast to cast an array to a const vec pointer.

// An array to cast
std::array<float, 3> a1 = { 3, 2, 1 };
// A function taking a const pointer argument
void f_const_ptr_v (const morph::vec<float, 3>* v1) { /* morph::vec operations */ }
// Calls to the function, passing in the array
f_const_ptr_v (static_cast< const morph::vec<float, 3>* >(&a1));
f_const_ptr_v (reinterpret_cast< const morph::vec<float, 3>* >(&a1));
f_const_ptr_v (static_cast< morph::vec<float, 3>* >(&a1));
f_const_ptr_v (reinterpret_cast< morph::vec<float, 3>* >(&a1));

Cast array to a non-const pointer

You can only use static_cast to cast an array to a non-const pointer.

void f_nonconst_ptr_v (morph::vec<float, 3>* v1) { /* morph::vec operations */ }
f_nonconst_ptr_v (static_cast< morph::vec<float, 3>* >(&a1));

Cast array to a const reference

You can use static_cast or reinterpret_cast to cast std::array to a const vec<>&.

void f_const_ref_v (const morph::vec<float, 3>& v1) { /* morph::vec operations */ }
f_const_ref_v (static_cast< const morph::vec<float, 3>& >(a1));
f_const_ref_v (reinterpret_cast< const morph::vec<float, 3>& >(a1));
f_const_ref_v (static_cast< morph::vec<float, 3>& >(a1));
f_const_ref_v (reinterpret_cast< morph::vec<float, 3>& >(a1));

Cast array to a non-const reference

You can only use static_cast to cast array to a non-const vec reference.

void f_nonconst_ref_v (morph::vec<float, 3>& v1) { /* morph::vec operations */ }
f_nonconst_ref_v (static_cast< morph::vec<float, 3>& >(a1));

Casting morph::vec to std::array

You may need to use a third-party library to process data in a morph::vec. You can use these casts to avoid any need to duplicate the data.

Cast to a const array pointer

You can use static, reinterpret or dynamic casts to cast from morph::vec to std::array. Declaring that the pointer must be const is optional.

morph::vec<float, 3> v1 = { 1, 2, 3 };
void f_const_ptr_a (const std::array<float, 3>* a1) { /* std::array operations */ }
f_const_ptr_a (static_cast<std::array<float, 3>*>(&v1));
f_const_ptr_a (reinterpret_cast<std::array<float, 3>*>(&v1));
f_const_ptr_a (dynamic_cast<std::array<float, 3>*>(&v1));
f_const_ptr_a (static_cast<const std::array<float, 3>*>(&v1));
f_const_ptr_a (reinterpret_cast<const std::array<float, 3>*>(&v1));
f_const_ptr_a (dynamic_cast<const std::array<float, 3>*>(&v1));

Cast to a non-const array pointer

You can static cast or reinterpret_cast to cast vec to a non-const array pointer

void f_nonconst_ptr_a (std::array<float, 3>* a1) { /* std::array operations */ }
f_nonconst_ptr_a (static_cast<std::array<float, 3>*>(&v1));
f_nonconst_ptr_a (reinterpret_cast<std::array<float, 3>*>(&v1));

Cast to a const array reference

Two possibilities for static_cast and one for reinterpret_cast.

void f_const_ref_a (const std::array<float, 3>& a1) { /* std::array operations */ }
f_const_ref_a (static_cast< std::array<float, 3> >(v1));
f_const_ref_a (static_cast< std::array<float, 3>& >(v1));
f_const_ref_a (dynamic_cast< std::array<float, 3>& >(v1));

Cast to a non-const array reference

You can either static_cast or dynamic_cast from vec to array by reference.

void f_nonconst_ref_a (std::array<float, 3>& a1) { /* std::array operations */ }
f_nonconst_ref_a (static_cast< std::array<float, 3>& >(v1));
f_nonconst_ref_a (dynamic_cast< std::array<float, 3>& >(v1));

Member functions

Setter functions

template <typename _S=S> // S and N from morph::vec class template
void set_from (const std::vector<_S>& vec);
void set_from (const std::array<_S, N>& ar);
void set_from (const std::array<_S, (N+1)>& ar);
void set_from (const std::array<_S, (N-1)>& ar);
void set_from (const vec<_S, (N-1)>& v);

These set_from functions set the values of this morph::vec from other containers. Note that there are versions which take one-bigger and one-smaller arrays; these are used in the graphics code where 3D vectors are converted to 4D before being multiplied by 4x4 transform matrices.

void set_from (const _S& v);
void zero();
void set_max();
void set_lowest();

This set_from overload fills all elements of the morph::vec with v. zero(), set_max() and set_lowest() fill all elements with S{0}, the maximum possible value for the type and the lowest possible value, respectively.

Numpy clones

void linspace (const _S start, const _S2 stop);
void arange (const _S start, const _S2 stop, const _S2 increment);

Python Numpy-like functions to fill the morph::vec with sequences of numbers. linspace fills the vec with N values in a sequence from start to stop. arange fills up to N elements starting with start and ending with stop incrementing by increment. If the function gets to the end of the array, then it simply stops. If it fails to fill the array, remaining values will be 0.

Random numbers

Three functions to fill a vec with random numbers:

void randomize();                // fill from uniform random number generator, range [0,1).
void randomize (S min, S max)    // fill from uniform RNG, range [min,max).
void randomizeN (S _mean, S _sd) // fill from normal RNG with given mean and std. deviation.

Plus-one/less-one dimension

vec<S, N-1> less_one_dim () const;
vec<S, N+1> plus_one_dim () const;
vec<S, N+1> plus_one_dim (const S val) const;

Returns a morph::vec with one additional or one less element.

Type conversions

These return a new vec in the requested type:

vec<float, N> as_float() const;
vec<double, N> as_double() const;
vec<int, N> as_int() const;
vec<unsigned int, N> as_uint() const;

For example:

morph::vec<int, 3> vi = {1,2,3};
morph::vec<float, 3> vf = vi.as_float(); // Note: new memory is used for the new object

String output

std::string str() const;
std::string str_mat() const;
std::string str_numpy() const;

These functions output the array as a string in different formats. The _mat and _numpy versions generate text that can be pasted into a session of MATLAB/Octave or Python. Output looks like (1,2,3) (str()), [1,2,3] (str_mat()) or np.array((1,2,3)) (str_numpy()). If you stream a vec then str() is used:

morph::vec<int, 3> v = {1,2,3}; // Make a vec called v
std::cout << v;                 // Stream to stdout

gives output (1,2,3).

Length, lengthen, shorten

template <typename _S=S>
_S length() const;                     // return the vector length
_S length_sq() const;                  // return the vector length squared
_S sos() const;                        // also length squared. See header for difference
// Enabled only for non-integral S:
vec<S, N> shorten (const S dl) const;  // return a vector shortened by length dl
vec<S, N> lengthen (const S dl) const; // return a vector lengthened by length dl

The range and rescaling or renormalizing

You can obtain the range of values in the vec with vec::range which returns a morph::range object:

morph::range<S> range() const;

Example usage:

morph::vec<float, 3> v = { 1, 2, 3 };
morph::range<float> r = v.range();
std::cout << "vec max: " << r.max << " and min: " << r.min << std::endl;

To re-scale or renormalize the values in the vec:

void renormalize();  // make vector length 1
void rescale();      // rescale to range [0,1]
void rescale_neg();  // rescale to range [-1,0]
void rescale_sym();  // rescale to range [-1,1]

Renormalization takes a vector and makes it have length 1. Thus, renormalize() computes the length of the vec and divides each element by this length.

Use rescale when you want the values in the array to range between 0 and 1. recale will find a linear scaling so that the values in the vec will be in the range [0,1]. rescale_neg finds a scaling that puts the values in the range [-1,0]. rescale_sym puts the values in the range [-1,1].

Note that these functions use a template to ensure they are only enabled for non-integral types:

template <typename _S=S, std::enable_if_t<!std::is_integral<std::decay_t<_S>>::value, int> = 0 >

Check whether your renormalized vector is a unit vector:

bool checkunit() const; // return true if length is 1 (to within vec::unitThresh = 0.001)

Finding elements

A group of functions to find the value or index of particular elements in the array.

S longest() const;          // return longest element (greatest magnitude)
size_t arglongest() const;  // return index of longest element
S shortest() const;         // return shortest element (closest to 0)
size_t argshortest() const; // return index of shortest element
S max() const;              // return max element
size_t argmax() const;      // return index of max element
S min() const;              // return min element
size_t argmin() const;      // return index of min element

Content tests (zero, inf, NaN)

bool has_zero() const;
bool has_inf() const;         // can only return true if type S has infinity
bool has_nan() const;         // can only return true if type S has NaN
bool has_nan_or_inf() const;  // can only return true if type S has infinity and/or NaN

Replacing NaN and inf values

To replace all not-a-numbers in a vec with another value use:

void replace_nan_with (const S replacement)

To replace NaNs and infinitities, it’s:

void replace_nan_or_inf_with (const S replacement)

Simple statistics

// These template functions are declared with a type _S:
template<typename _S=S>

_S mean() const;          // The arithmetic mean
_S variance() const;      // The variance
_S std() const;           // The standard deviation
_S sum() const;           // The sum of all elements
_S product() const;       // The product of the elements

Maths functions

Raising elements to a power.

vec<S, N> pow (const S& p) const;          // raise all elements to the power p, returning result in new vec
void pow_inplace (const S& p);             // in-place version which operates on the existing data in *this
template<typename _S=S>
vec<S, N> pow (const vec<_S, N>& p) const; // Raise each element in *this to the power of the matching element in p
template<typename _S=S>
void pow_inplace (const vec<_S, N>& p);    // in-place version

The signum function is 1 if a value is >0; -1 if the value is <0 and 0 if the value is 0.

vec<S, N> signum() const;    // Return the result of the signum function in a new vec
void signum_inplace();       // in-place version

Floor computes the largest integer value not greater than an element value. This is applied to each element.

vec<S, N> floor() const;     // Return the result of the floor function in a new vec
void floor_inplace();        // in-place version

Ceil computes the least integer value not less than an element value. This is applied to each element.

vec<S, N> ceil() const;      // Return the result of the ceil function in a new vec
void ceil_inplace();         // in-place version

Trunc computes the nearest integer not greater in magnitude than element value. This is applied to each element.

vec<S, N> trunc() const;     // Return the result of the trunc function in a new vec
void trunc_inplace();        // in-place version

Square root or the square. These are convenience functions. For cube root, etc, use pow().

vec<S, N> sqrt() const;   // the square root
void sqrt_inplace();
vec<S, N> sq() const;     // the square
void sq_inplace();

Logarithms and exponential

vec<S, N> log() const;     // element-wise natural log
void log_inplace();
vec<S, N> log10() const;   // log to base 10
void log10_inplace();
vec<S, N> exp() const;     // element-wise exp
void exp_inplace();

absolute value/magnitude

vec<S, N> abs() const;     // element-wise abs()
void abs_inplace();

The scalar product (also known as inner product or dot product) can be computed for two vec instances:

template<typename _S=S>
S dot (const vec<_S, N>& v) const

The cross product is defined here only for N=2 or N=3.

If N is 2, then v x w is defined to be v_x w_y - v_y w_x and for N=3, see your nearest vector maths textbook. The function signatures are

template <typename _S=S, size_t _N = N, std::enable_if_t<(_N==2), int> = 0>
S cross (const vec<_S, _N>& w) const;
template <typename _S=S, size_t _N = N, std::enable_if_t<(_N==3), int> = 0>
vec<S, _N> cross (const vec<_S, _N>& v) const;

Also defined only in two dimensions are angle functions. angle() returns the angle of the vec. It wraps std::atan2(y, x). set_angle() sets the angle of a 2D vec, maintaining its length or setting it to 1 if it is a zero vector.

S angle() const;                  // Returns the angle of the 2D vec in radians
void set_angle (const _S _ang);   // Set a two dimensional angle in radians